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During this period we completed two tasks:

1. We retrieved the vertical distribution of ozone from a series 0.005-0.013 cm _ resolution

infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak

National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model

and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-

1003.2 cm 1 spectral interval has been selected for the analysis on the basis of synthetic spectrum

calculations. The characterization and error analysis of the method have been performed. It was

shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (_>100) the

retrieval is stable, with the vertical resolution of _ 5 km attainable near the surface degrading to

10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The

retrieved total ozone and vertical profiles have been compared with total ozone mapping

spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak

Measurements and about 100 ozone ozonesoundings and Brewer total column measurements

from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to ±2%. The

retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone

spring maximum and fall minimum measured by Palestine sondes, but up to 15°4 differences in the

absolute values are obtained.

. We developed a technique to determine the vertical distribution of CO from ground based

solar spectra measurements. A method to retrieve elements of the carbon monoxide (CO)

vertical distribution from ground-based high -resolution infrared solar spectra has been

developed. The method is based on the fact that the total column amount retrieved by

nonlinear least squares spectra fitting techniques depends on the shape of the assumed apriori

profile and this dependence is a function of the absorption line intensity and the lower state

energy of the transition. Four CO lines between 2057 and 2159 cm "_ have been selected and

the method has been tested on synthetic spectra. The CO total column content and average

concentrations in two atmospheric layers (surface to 400 mbar and 400mbar to the top of the

atmosphere) can be retrieved with precisions of about 1% and less than 10% respectively.

Solar spectra recorded at Kitt Peak from 1982 to 1993 have been analyzed. The CO total

column and the average concentration in the two layers show an asymmetrical seasonal cycle

with extreme values of(1.1-2.1) x 1018 molecules cm "2, (50-80) parts per billion by volume

(ppbv) in the top layer and (80-160) ppbv in the bottom layer, and precisions of 1,3, and 6%

respectively; a spring maximum and late summer minimum are observed.

More details are contained in the following articles published in the Journal of Physical Research.
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Infrared measurements of the ozone vertical distribution

above Kitt Peak

N. S. Pougatchev t,2

Christopher Newport University, Newport News, Virginia

B. J. Connor and C. P. Rinsland

Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia

Abstract. The vertical distribution of the ozone in the troposphere and the lower and

middle stratosphere has been retrieved from a series 0.005-0.013 cm -1 resolution infrared
solar spectra recorded with the McMath Fourier transform spectrometer at the National
Solar Observatory on Kitt Peak. The analysis is based on a multilayer line-by-line forward
model and a semiempirical version of the optimal estimation inversion method by
Rodgers. The 1002.6-1003.2 cm -1 spectral interval has been selected for the analysis on
the basis of synthetic spectrum calculations. The characterization and error analysis of the
method have been performed. It was shown that for the Kitt Peak spectral resolution and
typical signal-to-noise ratio (>-100) the retrieval is stable, with the vertical resolution of
_5 km attainable near the surface degrading to _10 km in the stratosphere. Spectra
recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and

vertical profiles have been compared with total ozone mapping spectrometer (TOMS)
satellite total columns for the location and dates of the Kitt Peak measurements and

about 100 ozone ozonesoundings and Brewer total column measurements from Palestine,
Texas, from 1979 to 1985. The total ozone measurements agree to ___2%. The retrieved
profiles reproduce the seasonally averaged variations with altitude, including the ozone

spring maximum and fall minimum measured by Palestine sondes, but up to 15%
differences in the absolute values are obtained.

1. Introduction

Ozone (03) is one of the most important telluric gaseous
components from the Earth's surface to the top of the atmo-

sphere, but in different layers its role in atmospheric chemistry
and radiative transfer, and the processes that regulate its vari-

ation, are different [Worm Meteorological Organization
(WMO), 1991]. Stratospheric ozone that absorbs UV radiation
with a wavelength shorter than 300 nm is susceptible to deple-
tion by catalytic cycles involving decomposition products of
man-made chlorinated and halogenated compounds (the phe-
nomenon of the Antarctic ozone hole, etc.) Ozone in the upper

troposphere and lower stratosphere (-10-17 km) contributes
to greenhouse warming, and its amount is controlled by both
dynamics and photochemistry. Exhaust products of jet aviation
result in a perturbation of the ozone content at these altitudes,
and both theoretical and experimental studies of this effect are
now in progress [Albritton et al., 1993]. In the lower tropo-
sphere, ozone is one of the key components in almost all

photochemical processes, with high levels leading to adverse
effects on human health, vegetation, etc. [McKee, 1994]. Anal-
ysis of balloonsonde measurements has shown that, at least in
the northern hemisphere, there has been a steady ozone in-
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crease of 10% per decade over the past two decades [WMO,
1991]. An increase of a factor of 5 since the beginning of the
20th century is indicated from analysis of old ozone measure-
ments at the Pic du Midi Observatory iv.France [Marenco et al.,

1994]. Thus the study of the 03 vertical distribution is one of

the most important problems in atmospheric physics and
chemistry.

Many passive and active measurement methods and re-
trieval algorithms are now in use for measuring O3 profiles. A
comparative analysis of the most widely used and reliable of
these algorithms has been reported by Rodgers et al. [1988]. All

passive remote techniques have an area of maximum sensitivity
above 10 km, where about 90% of the ozone total column is
located. Furthermore, ground-based methods such as the

Umkehr technique [Rodgers et al., 1988] and microwave sound-
ing [Connor et al., 1994, 1995] provide reliable results only for
altitudes higher than _20 km. Thus tropospheric and lower
stratospheric ozone is not measured.

Ground-based high-resolution infrared (IR) solar spectros-

copy is a powerful tool for the study of not only total columns
of atmospheric trace gases, but also their vertical distribution
[Pougatchev and Rinsland, 1995; March_ et al., 1980; Adrian et
al., 1992; Goldman et al., 1991; Taguchi et al., 1990a]. Taguchi

et al. [1990a] reported results of an ozone profile retrieval using
heterodyne measurements in the regiov, of the 9.6-#m 03
absorption band. The error analysis by Taguchi et al. [1990b]
showed that their method is sensitive to the vertical profile in
the 10- to 30-km altitude range. Pougatchev and Rinsland
[1995] showed that in the case of carbon monoxide (CO), the
analyzed spectrum contains features that are sensitive to dif-
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Figure 1. Calculated solar spectra with whole ozone profile

(solid line) and with ozone in the troposphere only (dashed

line). Spectral resolution is about 0.006 cm-_.

ferent parts of the vertical profile, so that retrieval of column

amounts in two layers, from the surface to ,_7 km and from 7

km to the top of the atmosphere, is possible.

Fortunately, the 9.6-/xm ozone band, the strongest in the

infrared, consists of a large number of lines with different

intensities and temperature dependencies, which provide an

opportunity to select spectral intervals containing features sen-

sitive to different portions of the ozone profile from the surface

to the midstratosphere. Furthermore, ground-based Fourier

transform infrared (FTIR) solar spectroscopy has been used

for measuring atmospheric trace gases for many decades and in

several locations (e.g., Kitt Peak) [Zander and Rinsland, 1990].

Hence there is a potential.source of simultaneous data on

ozone and molecules affecting the ozone distribution such as

CO, chlorofluorocarbons, NO, and NO2.

The main objectives of the present work are as follows: (1)

develop a practical procedure for retrieving the ozone vertical

distribution from ground-based FTIR solar spectra with a res-

olution 0.005-0.01 cm -_ on the basis of a semiempirical ap-

plication of the optimal estimation method of Rodgers [1976];

(2) test the method on synthetic spectra to study the influence

of the instrumental noise and uncertainties in the assumed

instrument line shape function and a priori information on the

results of the retrievals; and (3) analyze a time series of solar

spectra recorded at the National Solar Observatory on Kitt
Peak for the ozone vertical distribution and its variation with

season and compare the results with previous measurements.

2. Method

The method is based on fitting of the calculated spectrum to

the recorded one by means of adjustment to the ozone profile

and supplementary instrument-related parameters, such as

background line, but not the instrument response function.

The Rodgers [1976] optimal estimation technique has been

used for the inversion. Following the analysis of Rodgers [1990],

we have characterized our retrievals and performed an error

analysis.
In this section the forward model and inverse method are

discussed, and an error analysis is performed to evaluate the

uncertainties in the retrieved profiles.

2.1. Forward Model

A multilayer, multispecies line-by-line radiative transfer

model developed at the NASA Langley Research Center for

the analysis of FTIR solar spectra has been used in the present

investigation [Rinsland et al., 1982, 1984, 1985]. The key as-

sumptions and characteristics of this model are (1) homoge-

neous layers in local thermodynamic equilibrium, (2) a Voigt

line shape function computed with the algorithm of Drayson

[1976], (3) refractive ray-tracing calculations with subroutines

from Gallery et al. [1983], and (4) instrumental line shape

function calculations with a Fourier transform technique in-

cluding the effects of apodization, maximum optical displace-

ment, and the finite field of view. Additional instrumental

parameters are included to model, for example, the variation

of the instrument response function with wavenumber and

wavenumber shifts between the measured and calculated spec-

tra. Recently, total columns obtained with this forward model

and a modified Levenberg-Marquardt nonlinear least squares

fitting procedure (the "SFIT" retrieval code) have been re-

ported and compared with values obtained with other algo-

rithms [Zander et aL, 1993].
The forward model described above has been extended to

allow simultaneous analysis of multiple spectral regions in a

series of spectra. However, for the initial study reported in this

paper, we have restricted its application to the analysis of one

spectral interval in a single spectrum at a time. We used here

a total of 29 atmospheric layers, with 1-km vertical thicknesses

in the troposphere, increasing to 2 km in the lower strato-

sphere, 5-10 km from 35 to 80 km, and a final layer from 80-

to 100-km altitude. Temperature profiles calculated from Na-

tional Meteorological Center soundings for the date and loca-

tion of the Kitt Peak measurements have been assumed (M.

Gelman, private communications, 1990-1994). The spectro-

scopic line parameters given on the 1992 HITRAN compila-

tion [Rothman et al., 1992] have been used.

2.2. Interval Selection

Two criteria have been adopted for the selection of the

spectral interval. First, it must contain ozone absorption fea-

tures that make the retrieval sensitive to both the troposphere

and the stratosphere. Second, the interval must be free of

interferences by other atmospheric gases.

The spectral interval with boundaries 1002.578-1003.203
cm-_ has been selected. Simulations of this interval for the

whole atmosphere and in its lower (14 km) part are plotted on

Figure 1. The spectra have been calculated for Kitt Peak and

typical measurement conditions: surface pressure 790 mbar,

solar zenith angle 60 °, and the ozone profile from Figure 2. The

lower portion of this profile (below 56-mbar level) has been

obtained by averaging ozonesonde profiles from Palestine,

Texas (31.5°N, 95.4°W, 121 m above sea level). The upper part

is the annual average profile from microwave sounding at Ta-

ble Mountain (34°N, 118W¢) [Tsou et al., 1995] (J. J. Tsou,

private communication, 1994). Ozonesonde data have been

obtained from the Atmospheric Environmental Service of

Canada, which coordinates the World Ozone Data Center

(WODC). These sites have been selected as references be-

cause they are the nearest to Kitt Peak in latitude. The ozone

total column is 304 Dobson units (DU), and in the troposphere

(below 14 km) there is only 35.8 DU, i.e., 12% of the total. The

central parts of the lines on Figure 1 are mostly determined by

stratospheric ozone absorption, but in windows between strong

lines the absorption due to tropospheric ozone can be 50% or
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more of the total absorption. Interferences such as H20 and
CO2 do not have any significant features in this interval. Thus

the selected interval meets the criteria formulated above.

2.3. Inverse Method

The measured spectrum may be conceptually described as

y = F(x,b)+ e, (I)

where y isthe vector of measurements, F isthe forward func-

tion,which relates the true state of the atmosphere and the

properties of the observing system to y, x is the "state vector"

containing the quantities to be retrieved (the ozone profile, the

signal corresponding to the 100% transmission level in the

spectrum, and instrument-related parameters), h is a vector

containing other atmospheric and instrumental specifications

that are not to be retrieved (such as spectroscopic parameters),

and ey is a vector of direct errors of measurement (noise, etc.).

The retrieval employs the method of Newtonian iteration of

optimal estimation, where the (n + 1)st iterate is given by

[Rodgers, 1976, equation (100)]

xn+ 1 = Xo + (S_ 1 + K_S_IKn)-IK_rS_ 1

• [(y - y.) - K_(xo - x.)] (2)

and x_ is the a priori state vector, Sa is its covariance, S_ is the

covariance of ey from (1), and

y. = f(x.,b) (3)

where f isa forward model, which is distinguishedfrom for-

ward function F because F embodies the true physicsof the

atmosphere (and instrument), while f embodies our best at-

tempt to model it. Finally, the partial derivatives I_ required

in (2) are calculated from

0.K_ = (4)
XN

The first point to note is the generality of this approach. No

assumptions are made about the physics in F or about the

nature of either x or y. Thus in our implementation, y may

consist of measurements in multiple spectral windows re-

corded at multiple solar zenith angles and x may consist of

vertical profiles of several species as well as key instrument

parameters.

In practice, the number of elements of y is large, so that its

error covariance S, is awkward to store and invert; thus we

assume that it is diagonal, i.e., that the measurement errors at

each wavenumber are independent.

Ideally, the xa would represent the mean state of the atmo-

sphere and S_ its covariance, but in practice, neither of these

are well known, so we have adopted an approach whereby we

use a set of simulated spectra (calculated from actual ozone-

sonde measurements) to test the sensitivity of the retrievals to

both x_ and Sa, and to enable us to choose values for Sa that

provide satisfactory results for the full range of profiles ob-

served in the atmosphere. This is the "semiempirical" modifi-

cation to Rodgers' technique referred to earlier.

2.4. Characterization and Error Analysis

Characterization and the error analysis are the only ap-

proaches that enable us to understand the geophysical mean-

ing of our retrievals and estimate their reliability. Furthermore,

in the case of ozone measurements, which have a long history,
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Figure 2. Ozone profile used in this study. Solid line shows

column in layers; dotted line shows volume mixing ratio.
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following this method, we can evaluate the strong and weak

points of our method as compared with existing ones.

In this work we follow the ideology that has been applied to

the analysis of the remote ozone measurement methods [Rodg-

ers et al., 1988] and then generalized by Rodgers [1990]. The

retrieved profile x' is related to the true profile at the moment

of observation x by

x' = x, + A(x - xo) + (error terms) (5)

where A is a matrix whose rows, according to Backus and

Gilbert [1970], we call averaging kernels. Error terms account

for retrieval errors due to errors in the measurements and

model.

Thus far we have not specified the units for the vertical

profile, i.e., whether the ozone amount is expressed in volume

mixing ratio, number density, partial pressure, or something

else. For the formal consideration, this does not matter, but to

make the characterization more explicit, we present the ozone

vertical distribution as ozone columns qi (i = 1, 2, .--, 29)

in the 29 discrete atmospheric layers defined above (i = 1

corresponds to the top layer). For this case, if the retrieval q'

and A matrix are known for some discretization of the profile,

the retrieved summary column in M -< 29 adjacent layers q's is

M M 29 M

q: = ___ qJ = ___ q,i + _ __, Ati(q,- q,,)

i=1 i=1 I=1 i=1

or in vector form,

q" = q,_ + A,(q - qa) (6)

where A_ is the averaging kernel characterizing retrieval q_ in

the ith layer (ith row of the A matrix) and A_ is the averaging

kernel for the ozone column retrieval from M layers. For the

ease of M = 29, As characterizes the total ozone retrieval.

In the following section, both the A matrix and the error

terms are analyzed.
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2.5. Averaging Kernels

Expression (5) gives us a straightforward way to calculate of

the A matrix. If the true profile q differs from the a priori one

only by a perturbation in a singIe kth layer, i.e.,

q = q,, + d (7)

where d is a vector with components di= dS_k (i = 1, 2, "",

29), d is a scalar, and 8_k is the Kroenecker delta, then

q, = q, + dA k

and

study the behavior of the retrieval and, using (6), to determine

the layers where the retrieval is stable and representative.

Averaging kernels have been calculated for the ozone profile

from Figure 2 with covariances S_ taken in diagonal form with

equal elements corresponding to a spectral signal-to-noise ra-

tio of 100. The diagonal elements in the S_ matrix have been

calculated from s, = (kiqai) 2, where qai is the corresponding

element of the ozone a priori profile and k_ is a coefficient that

takes a value 2.0 for layers below 10 km, rises from 2.0 to 4.0

between 10 and 16 km, and remains constant at 1.2 in the

stratosphere. Off-diagonal elements, which represent a corre-

lation between the ozone variations at different altitudes, have

been calculated assuming s/i = (siisii) I/2 exp {-(h i - hj)2/n2},

where h_ and hj are mean altitudes of the corresponding layers,

and H is a tuning parameter (in our case, H = 10 km). Instru-

ment-related parameters, such as the 100% transmission line

and the wavenumber shift, have also been estimated assuming

their covariances in S,, can be represented by diagonal ele-

ments only. Numerical values of these elements have been

taken large enough to make their retrieval practically indepen-

dent on a priori information. This particular form of S, was

chosen on the basis of numerous tests on synthetic spectra to

get the best performances of the retrieval.

The spectral resolution has been set to _0.006 cm-t (the

resolution of most of the Kitt Peak spectra studied here)•

The calculated averaging kernels (that part which is a func-

tion of altitude) are plotted on Figure 3. We note that the

averaging kernels for layers up to 25 km are peaked at approx-

imately the right levels. The full width at the half height is 3.5

km near the surface (the averaging kernel is also peaked at the

surface) and _10 km above 12-km altitude. Strong negative
excursion for levels above 16 km is observed. These oscillations

reflect the loss of the sensitivity of the retrieval for the ozone
vertical distribution at these altitudes. This fact is the result of

the relation between the spectral resolution and the ozone line

width. At the _100 mbar level (15-16 km) these parameters

become equal; hence the shape of the ozone line in the re-

corded spectra is not noticeably affected by the absorption

from the upper levels. Improvement of the spectral resolution

in the middle IR spectral region (_10 _m) would increase the

sensitivity of the method to _30 km (_10 mbar) because at

higher altitudes the contour of the ozone absorption line is

determined mostly by Doppler broadening. To raise the ceiling

still further, one would need to observe at longer wavelengths,

where the Doppler width is less.

It is clear that the retrievals at all 29 layers are not indepen-

dent and representative. For this reason, four thick, merged

layers with the parameters listed in Table 1 and their corre-

sponding averaging kernels plotted in Figure 4 have been se-

A k = (q' - q,)/d (8)

where Ak is the kth column of the A matrix.

Thus, calculating 29 synthetic spectra with the ozone profile

defined by (7) and then running 29 retrievals, we obtain the A

matrix for the specific a priori profile and set of parameters of

the forward and inverse model.

In the forward and inverse models the atmosphere has been

stratified inte 29 layers• For the retrieval of the ozone vertical

profile from the ground-based IR solar spectra, the number of

retrieved elements of the profile is, obviously, excessive from

the point of view of the vertical resolution attainable. However,

averaging kernels calculated on such a fine grid enables us to

Table 1. Layers Used in This Study

Averaging Kernels

Layer Boundaries, Peak Width,
km Position, km km

2.1-100 -- --
total

22-100 -- --
14-22 18 11

8-14 11 II

2.1-8 2.1 (surface) 5

Width is the full width at the half height•
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lected.Theaveragingkernelforthetotalozoneretrievalisalso
presented.It isseenthatkernelsforlayers2.1-8,8-14,and
14-22kmarepeakedatthecenterofcorrespondingintervals,
andtheverticalresolutionattainableis_5kmforthe2.1-to
8-kmlayerand_11kmforlayers8-14and14-22kin.All
partsoftheverticalprofilefromthealtituderange2.1-60km
contributewithapproximatelyequalweightsinthetotalozone
retrieval.

2.6. Error Analysis

An error analysis has been performed on the basis of the

ozone profile retrievals from synthetic spectra. The influence

of such parameters as the temperature profile, the ozone a

priori profile, instrument line shape function, and random in-

strument noise has been studied.

2.6.1. Noise. Random 1% (Gaussian) noise has been

added to 65 spectra synthesized with the ozone, temperature,

and pressure profiles from the Palestine soundings. We find
that random noise does not result in a bias but causes a random

error in the retrievals with standard deviation as listed in Table

2. Solar spectra recorded at Kitt Peak have a typical signal-to-
noise ratio better than 100.

2.6.2. Temperature profile. The strongest ozone lines in

the selected interval have lower state energies (E") in the

range 700-1000 cm -_, and for weaker lines the E" are even

higher. Therefore the line intensity, and hence the retrieval, is

sensitive to the accuracy of the temperature profile. To esti-

mate this sensitivity, the relative error of the retrievals caused

by constant shift + 1 K of the temperature profile in the inverse
model have been calculated. As seen from Table 2, such an

inaccuracy results in less than 1% error in the retrieval of the

total ozone and column ozone in all layers except 8-14 km.

2.6.3. Ozone a priori profile. If the a priori profile rep-

resents the average state of the whole ensemble of true pro-

files, i.e., q_ = _q), then

_q') = (Aq + (q° - Aqa)) = (q) (9)

Thus we see that the retrieval provides an unbiased estimate of

the true profile. In practice, we never know (q), so that the

adopted a priori profile might provide some bias and smooth-

ing. A rough idea of the a priori contribution to the specific

retrieval is given by (6) rewritten in the form
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Table 2. Errors of Retrieval and A Priori Contribution

Errors of Retrieval, % A Priori
Contribution

Random (Percentage of

Layer, km Noise* Temperaturel Standard Profile)

Total 0.6 -0.3 -0.5
22-100 2.4 -0.9 -2.2
14-22 9.4 0.6 2.8

8-14 32 3.1 2.2
2.1-8 12.3 -0.9 -0.6

*Standard deviation of the retrieval in the corresponding layer

caused by random noise in a spectrum with signal-to-noise ratio of 100.
terrors of the retrieval caused by the temperature profile shift of A T

= + 1 K in all layers.

q_ = A,q + (q.i- Aiq_)

where q_ and qai are the elements of the retrieved and the a

priori ozone profiles in the ith layer and A_ is the correspond-

ing averaging kernel. Then the ratio (qai - Aiq_)/q; or, ap-

proximately, (q,i - A_q,,)/q,i is the relative contribution of

the a priori profile to the retrieval. The last quantity is also

listed in Table 2.

To illustrate how the retrieval follows the true profile, Figure

5 shows the columns retrieved in layers 2.1-8 and 22-100 km

plotted as a function of the true values used for the calculation

of the spectra. The ratio of maximum to minimum value is 2.74

for the surface layer and 1.25 for the upper layer. In each layer

the retrieval follows the true quantity without noticeable bias

over the full range of values indicated by the sonde data.

2.6.4. Instrument line shape function. The recorded

spectrum is affected by temporal variations of the incoming

radiance during the measurements and instrument misalign-

ments [Guelachvili, 1981; Kyle and Blathenvick, 1984]. In the
forward and inverse models used in this work the uncertainty

of the instrument line shape function is modeled by a "straight

line" effective apodization function [Park, 1983]. From retriev-

als on synthetic spectra, we deduced that a 10% change in the

effective apodization parameter causes a 2% error in the total

ozone column and 10%, 20%, 15%, and 1.5% errors in the

retrievals from the layers at 22-100, 14-22, 8-14, and 2.1-8

kin, respectively. Thus the uncertainties in the line shape func-

tion cause significant errors in the retrieval, and special efforts

must be taken to accurately measure the instrument function.

Analysis of CO2 lines in real solar spectra recorded at Kitt

Peak showed typical differences of +-5% in the effective apo-

dization parameter. Since no bias was found, the coefficient of

this parameter was held fixed at its nominal value during the

analysis for 03.

3. Results and Discussion

The method described above has been applied to the anal-

ysis of the FTIR solar spectra recorded at Kitt Peak from 1980

through 1993. The unapodized spectral resolution varied from

0.005 to 0.013 cm -_, the signal-to-noise ratio was not worse

than 100, and the zenith angle was less than 85 ° . Temperature

and pressure profiles have been taken from National Meteo-

rological Center data for each day of observation. The a priori

ozone vertical profile has been taken as given in Figure 2, and

the parameters of the inverse model have been taken as de-

scribed in section 2.5. A total of 111 spectra recorded on 25
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Figure 5. Retrievals from synthetic spectra. Dashed line is
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days have been analyzed. Total ozone and the columns in four

layers (as defined above) have been retrieved.

3.1. Total Ozone

The results of the total ozone retrievals are presented in

Figure 6 and compared to total ozone mapping spectrometer

(TOMS) satellite total columns for the location and dates of

Kitt Peak (KP) measurements. (The TOMS data used in this

study have been obtained from the version 6.0 archived data

sets available at the National Satellite Service Data Center

located at the Goddard Space Flight Center.) An ordinate of

each point represents the KP daily mean value, and the ab-

scissa corresponds to the total ozone measured by TOMS.
Vertical bars indicate the standard deviation of the individual

KP retrievals about the daily mean; the average relative stan-

dard deviation is 2%. (The average relative standard deviation
is defined as

300

o
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Figure 6.

/
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Comparison of the total ozone retrieved from IR

spectra with correlative TOMS measurements. Vertical bars
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daily mean. See text for discussion on TOMS data.

i=1

where _r,. is a sample standard deviation of individual retrievals

during the ith day about daily mean Q_, N is the number of the

day of observation.) TOMS measurement precision is esti-

mated as 2% [Grant, 1989]. The dashed line in Figure 6 is the

45 ° bisectrix. A correction of 5.6 DU for the difference in

altitude between Kitt Peak (2.1 km) and the surrounding So-

nora Desert valley (800 m) has been applied to the TOMS
data. The correction has been inferred from the Palestine
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Figure 7. Comparison of the total ozone retrieved from IR

spectra with ground-based Brewer measurements at Palestine,

Texas. Solid circles are Kitt Peak daily mean; solid and dashed

lines are seasonal averages for Kitt Peak and Palestine, respec-

tively. Date is relative to January 1 = 0. See text for discussion
on Brewer data.
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Table 3a. Seasonal Ozone Averages

Layer

Total 2.1-8 km 8-14 km 14-22 km

16,695

22-100 km

KP PAL KP PAL KP PAL KP PAL KP

Season Q s.d. Q s.d. R q s.d. q s.d. R q s.d. q s.d. R q s.d. q s.d. R q s.d.

Spring 303 24 315 16 0.96 17.2 4.9 19.7 3.0 0.87 16 8.8 17.2 6 0.93 67.3 22.3 78.8 17 0.85 202 7.3
Fall 279 14 283 13 0.99 14.4 4.1 16.5 2.1 0.87 9.8 4.1 11.5 3.2 0.85 60.5 8.9 56.2 6.9 1.08 194 14.9

Q is the seasonally averaged total column O3 (in DU) as measured at Kitt Peak (KP) and Palestine (PAL); s.d. is a standard deviation (in DU)
of daily values about the seasonal average; q is the O 3 column (in DU) in the corresponding layer; R is the ratio of the O3 column measured
at Kitt Peak to that at Palestine.

ozonesondes. A strong correlation between the KP and TOMS

total columns (correlation coefficient _0.9) is found, but on

average, the KP data are _,2% higher than the TOMS mea-

surements.

Figure 7 presents a comparison between our measurements
of KP total ozone and values measured with a Brewer instru-

ment at Palestine (PAL) between 1979 and 1985. A correction

of 8.35 DU for the ozone content in the 0.121- to 2.1-km layer

has been applied to the Brewer data. Circles and diamonds

present daily total columns for KP and PAL, respectively;

vertical bars have the same meaning as for Figure 6. We see

that seasonal averages (spring and fall) for KP are 1-4% lower

than for PAL (Table 3a), but large natural scatter makes this

difference insignificant. Seasonal differences between spring and

fall total columns (Qs and Q_, respectively) are listed in Table 3b.

The relative difference is defined as 2(Q s - Qr)/(Qs + QF).

The agreement between our IR measurements and TOMS

and Brewer data provides us with an estimate of the systematic

error caused by discrepancy between IR and UV spectroscopic

parameters and retrieval procedures. If we attribute all ob-

served biases to these inaccuracies, the sum of these errors is

_+2%. David et al. [1993] reported ground-based high-

resolution IR total ozone measurements based on scaling of an

assumed ozone profile by a single multiplicative factor. The
measured IR columns were found to be about 5% lower than

correlative Dobson data. David et al. [1993] suggested that the

cause of the discrepancy might be the insensitivity of their

retrievals to the tropospheric ozone profile. Toon et al. [1992]

reported comparison of IR airborne ozone column measure-
ments in the Arctic with TOMS data. Differences of about

•+5% were found. Recently, Pickett et al. [1992] reported ozone

v 3 band intensities 5.1% higher than the 1992 HITRAN values

[Rothman et aL, 1992] we have assumed. If the revised inten-

sities are assumed, ozone columns retrieved from IR spectra

must be decreased by 5.1%. However, this would slightly in-

crease the discrepancies between our IR and correlative

TOMS measurements, and double the difference between the

Mauna Loa IR and Dobson measurements [David et aL, 1993].

3.2. Vertical Distribution

The results of the ozone column retrieval in four layers are

listed in Table 3 and plotted in Figure 8. The meaning of the

lines and symbols in Figure 8 is the same as in Figure 7. For

comparison, Palestine ozonesonde results are presented for

the layers below 22 km. Because sondes do not work above

_30 km, there are no data to compare with our measurements

for the 22- to 100-km layer.

The agreement between the seasonally averaged columns
from Kitt Peak and the sonde data is 15%, with a comparable

scatter in the daily average data. Intraday variations (not

shown in the table but indicated by vertical bars in Figure 8)

are 3%, 5%, 20%, and 16% for layers 22-100, 14-22, 8-14,

and 2.1-8 km, respectively (which can be taken as a charac-

teristic of the stability of the retrieval). Kitt Peak seasonal

averages are about 15% lower (except for fall data in layer

14-22 km) than those for Palestine. This bias is higher than

observed for the total ozone, but large variations and the small

data sample make it statistically insignificant. Seasonal changes

with a spring maximum and fall minimum are reproduced, and

the retrieved amplitudes (Table 3a) of the seasonal cycle are in

reasonable agreement with the values inferred from the ozone-

sondes.

4. Conclusions

The results of this work show that ground-based IR solar

spectroscopy can be a powerful tool for the study of the ozone

vertical distribution in the troposphere and lower stratosphere.

The total columns and layer averaged columns retrieved from

the Kitt Peak spectra are consistent with Brewer and ozone-
sonde measurements at Palestine and TOMS correlative mea-

surements. Observed biases (_+2% for total ozone and -<15%

Table 3b. Seasonal Ozone Differences

Layer

Total 2.1-8 km 8-14 km 14-22 km 22-100 km

Seasonal
Difference KP PAL KP PAL KP PAL KP PAL KP

Absolute, Did 24 32 2.8 3.2 6.2 5.7 6.8 22.6 8.0
Relative, % 8 11 18 18 48 40 11 34 4

Absolute seasonal difference is the difference between spring (Qs) and Fall (Q_) seasonal average O3 column as measured at Kitt Peak (KP)

and Palestine (PAL) in the corresponding layer; relative difference is calculated as 2(Qs - QF)/(Qs + Q_).
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Figure 8. Comparison of the ozone columns retrieved from

IR spectra with ozonesondes data at Palestine, Texas. The

format is the same as in Figure 7.

for the vertical distribution) indicate that further validations

and intercomparisons are required.
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Abstract. A method to retrieve elements of the carbon monoxide (CO) vertical

distribution from ground-based high-resolution infrared solar spectra has been
developed. The method is based on the fact that the total column mount retrieved by
nonlinear least squares spectral fitting techniques depends on the shape of the assumed

a priori profile and this dependence is a function of the absorption line intensityland the
lower state energy of the transition. Four CO lines between 2057 and 2159 cm- have
been selected and the method has been tested on synthetic spectra. The CO total
column content and average concentrations in two atmospheric layers (surface to 400
mbar and 400 mbar to the top of the atmosphere) can be retrieved with precisions of
about 1% and less than 10%, respectively. Solar spectra recorded at Kitt Peak from
1982 to 1.o93 have been analyzed. The CO total column and the average concentration
in the two layers show an asymmetrical seasonal cycle with extreme values of (1.1-2.1)
x 10 Is molecules cm -2, (50-80) parts per billion by volume (ppbv) in the top layer and

(80-160) ppbv in the bottom layer, and precisions of I, 3, and 6%, respectively; a
spring maximum and late summer minimum are observed.

1. Introduction

Carbon monoxide (CO) is one of the most important
molecules in tropospheric chemistry [Logan et al., 1981].
The reaction between CO and the hydroxyl radical (OH)
accounts for more than 80% of the global destruction of OH
and the total destruction of CO, and the reaction between

CO and OH, which produces an atom of hydrogen (H), may
also lead to the photochemical production of ozone (0 3) in
the troposphere [Rinsland and Levine, 1985].

All studies of CO in the Earth's atmosphere show signif-
icant time and space variability (see, for example, Dianov-
Klokov et al. [1989], Zander et al. [1989], and Seller and
Fishman [1981]) superimposed on seasonal and latitudinal
changes. Because of this variability, numerous measure-
meuts from a site over a long time period are required to
derive the regular features of the CO atmospheric cycle and
its long-term trend. Long time series of CO total column
abundances derived from ground-based solar spectroscopic
measurements [Golltsyn et al., 1991; Zander et al., 1989;
Wallaceand Za'vingston,1990]and surface concentration

[NoveUi et al.,1992,1994] measurements have been re-

ported from numerous stations. In addition, vertical profile
information has been obtained from airborne measurements

with in situ sensors [Seller and Fishman, 1981; Boatman et
al., 1989] and from remote sensors flying on the U.S. shuttle
[Reichle et aL, 1990; Rinsland et aL, 1992]. Ground-based
infrared spectroscopic measurements are an important com'
ponent of the CO database, but until the present, this method
has been used only for retrieving the CO total column even

Copyright 1995 by the American Geophysical Union.
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though these spectra also contain information about the CO
vertical distribution. Fur_&ermore, extensive sets of high-

quality infrared spectra covering many years were recorded
for several sites, for example, Kitt Peak (320N, 112"W, 2.1
km above sea level), where infrared spectra containing CO

absorption features have been recorded since 1976. These
spectra are a potential source of information about the CO
vertical profile and its variation with time.

These considerations urged us to develop a ground-based
spectroscopic method for retrieving information about the
vertical distribution of carbon monoxide from _ solar

spectra. One important requirement for this method is that it
should be applicable to solar spectra recorded in previous

years, which typically had resolutions of 0.01 to 0.04 cm -I.
The spectroscopic appearance of terrestrial CO lines in the

infrared region has several important characteristics: (1)
there are numerous telluric CO absorption lines in the

2.3-/an and 4.7-/an spectral regions; (2) the absorption in the
center of the strong lines at the 4.7-/_m region reaches 100%
(0--1 bands of the CI2016, C13016, and ct20 ts isotopic

species) [Goldman et aL, 1980]; O) the spectra] regions
occupied by the CO lines are strongly contaminated by

absorption features of other atmospheric molecules such as
H20, CO2, 03, OCS, and CH4; (4) each telluric CO line is
overlapped by the corresponding absorption line Doppler
shifted and formed at high temperature in the solar atmo-
sphere [Farmer and Norton, 1989]. Unfortunately, methods
to model these CO lines in the solar atmosphere are not yet

determined with sufficient accuracy for our purposes. All
these specific features of the spectra need to be taken into
account in order to retrieve the CO vertical distribution.

Only a few studies have reported retrievals of vertical
profiles from ground-based infrared solar spectra. We ex-

1409
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clude from consideration results obtained from instruments

other than Fourier transform spectrometers (for example,
I'4TI3 retrievals derived from infrared spectra recorded with
a heterodyne radiometer [HoeU et al., 1980]). March_ et al.
[1980] reported HCI vertical profiles derived from sets of
0.02 cm =1 resolution solar spectra covering the Rl and P5
fines of H35C1. Numerous spectra were recorded at zenith
angles from 50 ° through 90°. The method is based on the fact
that the curvature of the atmosphere and the refraction are
significant for high (>85 °) zenith angles, which means that
the absorption fraction of the same element of the vertical
profile in spectra recorded at different angles is a function of
the Sun's height. The main restriction of this method is the
necessity for very rapid recording of a sequence of spectra at
very low Sun. More recently, Adrian et al. [1992] reported
retrievals of the HC1 vertical profile on the basis of trying

several types of profile shapes to achieve the best fit to the
measured absorption fines.

Unfortunately, these two approaches could not be applied
to our study of the CO vertical distribution. Sequences of the
very low Sun spectra are not available to us, and the telluric
CO lines are overlapped by telluric and solar interferences,
making it difficult to retrieve the CO vertical distribution
directly from the measured line shape.

The main objectives of the present work are as follows: (1)

develop a practical method for retrieving the CO vertical
distribution from ground-based IR solar spectra with a
resolution <0.04 cm-I; (2) test the method on synthetic
spectra to study the influence of the instrumental noise and
uncertainties in the assumed a priori information on the
result of retrieval; and (3) analyze a time series of solar
spectra recorded at the National Solar Observatory on Kitt
Peak for the CO vertical distribution and its variation with

season.

and Pt(v') is the monochromatic transmittance of all inter-
feting gas components in the Earth's atmosphere.The CO
total vertical column abundance is defined by the equation

Q -- f: dh n(h)r(h) (2)

where h is the altitude above the observation point.

The retrieval of the total column is obtained by fitting
regions of the spectral data centered on individual CO lines
via the NLLS technique

N

G = min _ [If - l(vi, 0, _, a)]2
0.._ i-i

(3)

where If is the measured intensity at wavenumber vi and 0
is a scaling factor for the a priori vertical profile of the target
gas. We assume in (1) that r(i) = Ora(i), where ra(l) is the
profile assumed a priori; _ is the vector of supplementary
parameters such as the intensity in the spectrum that corre-

sponds to the 100% transmission level, scaling factors to
retrieve the content of interfering gases. To improve the
quality of the total column re_eval, these parameters are
determined as part of the minimization of G in 0). The
vector _ is the set of parameters which are assumed a priori
but not fitted as a part of retrieval, for example, the temper-
ature-pressure profiles and the spectroscopic parameters of
the absorption lines. The set 0', _' which produces a
minimum of G in (3) is assumed to be the best estimate of the

retrievedtotal column Q'

Q' = O'f:dh n(h)ra(h) (4)

2. Method

The method is based on the fact that the total column

amount retrieved by nonlinear least squares (NLLS) spectral
fitting techniques depends on the shape of the assumed a
priori profile and this dependence is a function of the
absorption line intensity and the lower-state energy of the
transition.

The intensity I at a wavenumber u recorded by a spec-
trometer can be written as

As can be seen from (1) and (3), the accuracy of Q' depends
on how close the shape of the a priori profile ra(h) is to the
shape of the true one at the moment of observation. Here we
assume that the two profiles rl(h) and r2(h) have the same
shape if there exists a nonzero constant c such that r l(h) =
cr2(h) for all h.

As was shown by Pugachev [1988], in the absence of any
other sources of error (except a small discrepancy in the
shape of the profile), the retrieved total column Q' obtained
from (3), can be expressed as

1"

l(v)--lo(v)jdr'A(v- v')To(p')PI(v')

• "'
where 1o(V) is the intensity of the solar radiation incident at
the top of the Earth's atmosphere, excluding solar CO fine
absorption; A(_u') is the response function of the spec-
trometer; To(v') is the function approximating the transmis-
sion in the presence of solar CO lines; the exponential term
represents the monochromatic transmittance due to the
terrestrial CO lines and the integral is taken along the
refracted ray from the spectrometer to the top of the
atmosphere; n(I) is the air number density; r(1) is the telluric
CO volume mixing ratio; K(T(I), p(J), v') is the CO
absorption coefficient at temperature T(l) and pressure p(I);

f-

Q' = Jo dh w(h)r(h)n(h) (5)

Here r(h) is the true profile at the moment of observation,
and it can be written as a linear combination of a priori

profile ra(h) and some unknown function _0(h)

r(h) = ro(h) + cp(h) (6)

where re(h) is the component with the same shape as
assumed a priori in (1) and (3). The weighting function w(h)
is defined as

w(h)= lim (8Q'ISQ) (7)
_Q--* O

where 8Q' is NLLS estimation of 8Q when the true profile
is
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t I

1

r(h) = ro(h) + 8QSCh - h') (8)

where 8(h - h') is the Dirae delta function.
Note that this definition (equation (7)) of the weighting

function differs from the one usually used in the remote
sensing theory (see, for example, Rodgers [1976]). Following
the ideology of Rodgers [1990] and Backus and Gilbert
[1970], our weighting function is instead an "'averaging
kernel" for the total column content.

It is obvious that the weighting function (WF) defined by
(7) and (8) depends on the shape of r0(h) and for all r(h) with

the same shape as re(h) should be a valid relation

fo" dh w(h)r(h)n(h)/fo" dh r(h)n(h)

Is:= dh w(h)ro(h)n(h) dh ro(h)n(h) ="1 (9)

It also was shown [Pugachev, 1988] that the altitude
dependence of w(h) is determined mainly by the absorption
in the line center and the temperature dependence of the line
intensity (this dependence is determined by the energy of the
lower state of the transition, E"). Thus the weighting func-

tion for strong lines with 100% absorption in the central part
has a maximum at the ground; and in contrast, the weighting
function for weak lines with relatively low 13"increases with
altitude. Thus the retrieval of the total column from lines

with a different weighting function provides us with the
formal opportunity to retrieve information about the vertical
distribution of the target gas from the ground-based solar
spectra.

The total column contents Qj retrieved from M lines (j =
1, 2, --. , M) are

Q'J= f: dh wj(h)r(h)n(h)
jffil,2,..., M (lO)

where r(h) is the unknown true vertical profile, Q_ is the
total column retrieved from thejth line; all Qj are retrieved
with the same assumed a priori profile ra(h). The profile r(h)
is presented in form (6) where ro(h) has the same shape as
ra(h).

The system (10) can be rewritten as

Q) ffi dh wy(h)r(h)n(h) + dh wj(h)r(h)n(h)
dO I

+''" + fh:-I dh wj(h)r(h)n(h)

Q'j ffi Qo + WllSQ! + v_ISQ2 +"" + _KISQI¢ (II)

K<-M - I

with

Qo = f: dh wy(h)ro(h)n(h) = fo** dh ro(h)n(h)

i.e., the component of the total column content due to ro(h)
and 8Qk are the contents of the target gas in the kth layer

due to the component of the profile cp(h); and _t¢ is the value

of wl(h) from the interval [wj(hk-O, w t(ht)] and on the
basis of the theorem of the mean value for integral _/is
defined as

s: Is:vP_4= dh wj(h)cp(h)n(h) dh _p(h)n(h) (12)
t-I t-I

Thus we have a system (11) of M linear equations with
K -< M - 1 variables Q0, {SQt} k = 1, 2, --., K. To
calculate the coefficients for the system (11) via formula (12),
we have to know the shape of the true profile or assume
some reasonable a priori profile. The influence of the a priori
profile oh the weighting functions will be studied further.

Average mixing ratio of the target gas in the kth layer r t
can be calculated as follows: here Q0, {SQt} are the solution
of the system (11) and 0 is

(Of h' dh ro(h)n(h)+ 'Qh)I_" dh n(h)rk'__ Jht-i t-t
(13)

1--

O= Qo/J: dh ra(h)n(h)
I

In other words the set of rk is the elements of the vertical

profile retrieved with the resolution {ht_ j, hi}, k ffi 1,
2,..., K.

Thus the expressions (6)-(13) form the basis for the
retrieval or"the vertical profile from the ground-based solar
spectra using the NLI.,S spectral fitting technique to estimate
the total column from individual lines.

The practical aspects of the problem such as the vertical
resolution attainable, the influence of the a priori information
and instrumental noise should be studied for each specific

target gas. Results of the application of the method to the
retrieval of the CO vertical distribution are presented in the

next part of this section.

Intervals Selection

Based on the analysis of simulated spectra, we selected
four spectral intervals, each containing a single I2CO or

13CO line. Examples of each interval in a Kitt Peak solar
spectra axe presented in Figure 1 with the identification of
the most distinctive features. Numerical characteristics of
the intervals and CO "lines are listed in Table 1. Additional

weak lines occur in the intervals, and each terrestrial CO line
is overlapped by solar CO absorption from the same transi-
tion.

As can be seen from Figure 1 and Table 1, the riCO R3
and the other three lines have significantly different intensi-
fies and values for the lower-state energy of the transition
(E'). The influence of the interfering terrestrial components
can be practically eliminated by simultaneous (with the CO)
retrieval of their column content from the same spectrum.
To avoid errors caused by inaccuracies in solar CO line
parameters, a special study has been done, which is dis-
cussed in the following section.

The spectroscopic parameters assumed in this study have
been taken from the 1992 H1TRAN compilation [Rothman et
al., 1992]. The algorithms used for the synthetic spectrum
calculations and the NLLS spectral fitting have been de-
scribed by Rinsland et al. [1982b].
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Figure 1. Examples of spectra in the intervals selected for
the CO profile retrieval. The spectra were recorded with a
resolution of 0.015 cm-l and a zenith angle of 55.5 °.

Solar CO Line Parameters

The calculation of the absorption by CO lines in the solar
atmosphere has been approximated by a single layer with
temperature of 4500 K. The Minnaert empirical formula
[Ri_land eta/., 1982a] has been used to simulate the solar
CO absorption line profile:

I/Rv = llRc + IIKvU (14)

where R, is the absorbed fraction of continuum radiation,
R c is the limiting residual intensity, U is the solar CO
column abundance, and K, is the monochromatic absorption
coefficient at a wavenumber v. Line positions have been
calculated from published Dunham coefficients [Farrenq et
al., 1991]. A Doppler line shape and terrestrial CO isotope
ratios have been assumed. Because of solar CO lines signif-

icandy broadened by micmturbulence in the solar atmo-
sphere, actual line width has been taken in form F_'D, where
F is a width factor for Doppler line width aD at 4500 K. The
values ofR o U, and line width for each solar CO fine in the
selected intervals have been derived by NLLS fits of the
model to ATMOS [Farmer and Norton, 1989] spectra re-
corded at tangent heights above 130 kin. Values for U, R c,
and the multiplicative factor F determined for each interval
are listed in Table 1.

Weighting Function Calculation

Weighting functions for the selected intervals have been
calculated by the following procedures: (1) a synthetic
spectrum has been calculated with a profile approximated by
(8). As r0(h), two profiles have been taken: the CO profile
from Smith [1982] (see our Figure 2) and the profile with the
constant mixing ratio 100 ppbv in the whole atmosphere. To
simulate the deltafunctionresponse,theconcentrationina
layer I to 2 km thick (depending on the altitude) has been
increased so that 8Q = 0.2Q0, where Q0 is the CO total
column content for r0(h); (2) the total column Q' has been
retrieved from these calculated spectra with to(h) as the
assumed a priori CO profile. Thus in accordance with (7) the
value of the weighting function at the altitude of the dis-

-_ 4

KittPeak SolarSpectrum
i I I

. ISCO _,

Plo _V

2057.70
I

2057.85

WAVENUMBER (CM-I)

Figure 1. (continued)

2058.00
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Table 1. Telluric and Solar cO Absorption Line Parameters Used for Retrieval

Parameter R3 Cl2Ol_ P7 ci3o'6 P9 cl3o!S PI0 C13016_

r,i¢,-,,_,cm-' 21_._¢159.3 2_.5._-2069.8 2061.z-2062.2 20s7."6_2oss.o
Intensity, a molecules -I cm 3.470E- 19 4.100E-21 3.875E-21 3.595E-_.1
E', cm -I • 23.0694 102.909 165.372 202.109
Solar column, b atm cm 3.622 2.479 1.789 3.039
Residual intensity b 0.1724 0.4281 0.3101 1.083
Width factor, c F 1.48 1.44 1.47 1.65

Read 3.470E-19 as 3.470 x 10"19
"Parameters for the Hnes of the terrestrial CO.
bparameters for the Minnaert formula (i4).
CFactorF accounts the broadening of CO tides in the solar atmosphere due to nficroturbulence.

turbed layer h can be calculated as w(h) = (Q' - Qo)l
0.2Q 0 = 5Q'/Q o - 1.

Steps 1 and 2 have been performed for each spectral

interval sequentially with spac'mg in altitude h of I km (h -<
14 kin), 2 km (14 < h _ 20 km), and the top layer was
(20 < h _ 80 kin). All calculations have been done for a
moderate zenith angle of 55 ° and ihe Kitt Peak elevation of
2.1 km above sea level. The calculat_l weighting functions
are presented in Figure 3.

It is seen that there are two significantly different types of

weighting functions: the R3-1ine type and the/'-line type.
The shape of the a priori, profile affects the weighting
functions but does not change their general behavior with
altitude. Qualitatively, such behavior can be easily ex-
plah3ed: (1) in the case of the strong R3 line (see Figure 1),
the absorption in the"wide central part reaches 100% and
obscures the absorption from the upper layers, where the

lines are narrower. The relatively weak temperatui'e depen-
dence cannot compensate for this effect. (2) In contrast, for
the weak P lines the effect of lines narrowing with altitude
mainly determines the behavior of the weighting function.

Vertical resolution. To .determine the vertical resolution
with which the solution of (! I) remains stable, the method
has been tested on synthetic spectra calculated with a set of
tropospheric CO profiles [Seller and Fishman, 1981]. It has
been found that our two types of weighting functions, one

with a maximum at the top and the Other with a maximum at

the bottom and intersection at 300--400 mbar (7--8 kin),
enable us to retrieve refiabiy only the total column amount
and the average concentrations in two atmospheric layers:
one extending from the surface to the 400-mbar (7 km) level
and the other from 400 mbar to the top of the atmosphere.
Furthermore, it was found that CO profiles consisting of

these two layers fit the synthetic spectra generated with real
profiles [Seller and Fishman, 1981] to the Kitt Peak sigual-
to-noise ratio of 200. No additional vertical profile informa-
tion can be retrieved from spectra of such quality.

Error analysis. In this section, studies of the sensitivity
of the solution of (11) due to instrumental noise and uncer-
tainties in the CO spectroscopic parameters, the effective
solar zenith atigle, the assumed a priori temperature profile,
and the shape of the CO profile are reported. AJI of the
sensitivity studies have been done with synthetic spectra.

First of all, thestability of the solution of (11) with respect

to errors in Qj (of any origin) has been studied. It was found
Sat a 1% disturbance in any Qj causes relative errors in the
retrieved total column (Q') less than 1% and changes in the
average concentrations in the bottom (ri) and top (r2) layers
of less than 4%. The addition to the spectra of random noise
with a normal distribution and an amplitude I% of a maxi-
mum signal level results in noise in the retrieved Qj of less
than 3% for the P-branch lines and 0.3% for the R 3 line.

.
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retrieval [Smith, 1982].
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Figure 3. Calculated weighting functions. Solid curves,
c_alculations with profile in Figure 2; dashed curves, with
constant (100 ppbv) mixing ratio in whole atmosphere.
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The absolute accuracy of the CO line spectroscopic pa-
rameters is estimated as +-3% for intensities [Chackerian et
al., 1983] and halfwidths [Nakazawa and Tanaka, 1982]. For

Qj retrieval those are the source of systematic errors.
Inaccuracies of intensities result in errors of Qj retrieval of
the same value. Inaccuracies of half width do not practically

affect Qj retrievals for P fines but introduce the error of the
same value in the R 3 line retrieval.

Error of effective solar zenith angle calculation results in

the error of the same value in Qy retrieval. As was shown by
Rinsland et al. [1984], these errors are negligible for zenith
angles <80 ° and might be up to 4% for the angles _85 °.

The sensitivity of the retrieved values Q', r I , and r2 to the
accuracy of the temperature profile has been studied. It was
found that a constant 1 K shift between the profile used for

spectrum simulation and the one used for the Qj retrieval
results in errors in the retrieved values of Q', rl, and r, of
0.7, 1.5, and I%, respectively.

Spectra with different CO verti_d profiles have been

synthesized and then using the method with the a priori
assumed CO profile in Figure 2 [Smith, 1982], values of Q',
r I , and r2 have been retrieved. Profiles taken for the spectra
calculation are presented in Figure 4. The bottom part of
profiles I to IV have been taken from Seller and Fishman
[1981], the part above 20 km has been fixed as the same as in
Figure 2. To simulate the situation with a polluted boundary
layer, profile V has been constructed from profile IV by
tripfing the CO concentration in the lowest 2-kin layer. The
relative accuracy of Q', rl, and r2 derived from these
retrievals are presented in Table 2.

It is seen from these studies that the method's precision

can be estimated as roughly +-1% for Q' and +-10% for r i
and r2. A systematic bias of +-3 to +-6% is estimated. For
comparison, precision of the total column retrievals based

on R 3 line only are presented at the last column (R 3 is the
fine used by Shaw [1958], Dianov-KIokav et al. [1989],
Zander et al. [1989], and Zander and Rinsland [1990]). It is
clear that the Use of our method can improve the precision in
the CO total column by a factor of 4.

Table 2. Relative Errors of the CO Total Column and
Average Concentration in the Top and Bottom Layers
Retrieved From Synthetic Spectra

Total .
Profiles, Top, Bottom,
Figure 4 r2 r: Q' R3-1ine

I -12% +6% +0.3% +4.2%
II 1.2% -2% -0.5% -4%
m -9% +5% +1% +3.9%
IV 13% -10% +0.8% -4.4%
v 2.4% -2.5% -0.9% +2.9%

3. Results and Discussion

The method described above has been applied to the

analysis of the Fourier transform IR solar spectra recorded
at Kitt Peak from 1982 to 1993. The spectral resolution
varied from 0.015 to 0.03 cm-m, the signal-to-noise ratio was
not worse than 200, and the zenith angle was less than BY.

Temperature and pressure profiles have been taken from
National Meteorological Center data for each specific day of
observation. The FASCODE ray-tracing program [Gallery et
al., 1983] has been used to calculate the amounts of the

absorbing species along the ray path. The shape of the CO
vertical profile has been taken as given in Figure 2.

The results of the CO total column Q' retrieval are
presented in Figure 5. Circles represent Q' values retrieved
from a single spectrum. An the data are plotted as a function
of the day of the year only. The solid curve is drawn through
monthly averages (Y coordinate) and the middle of each
month (X coordinate). The seasonal cycle has a significantly
asymmetrical shape with a maximum of 2.1 x 10Is mole-
cules cm-2 during March and April and a minimum of 1.1 x

1018 molecules cm -2 at July (unfortunately there were no
observations in August). The precision of the data estimated
as an average interday mean-squaze-root spread of the
individual retrievals is 1%. For comparison, CO total column
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Figure 5. The CO total column above Kitt Peak plotted as
a function of day of the year. Circles show values retrieved
from an individual spectrum, the solid curves show monthly
averages, and diamonds with bars are the results of Wallace
and Livingston [1990].
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Solar spectroscopic measurements at the same location but
on the basis of another, retrieval method and 2.3-/an spectral
region observations are also plotted (diamonds) [Wallace
and Livingston, 1990]. The ordinates of the diamonds corre-
spond to the minimtJm and maximum of theii" best fit
seasonal cycie and the vertical bars represent the spread of

their individual Observations (as taken from their Figure 6).
Wallace and Livingston [1990] used the sine function to
approximate the seasonal variation. However, from our
measurements and model calculations (J. A. Logan, private
communication, 1994) it is clear that the CO total column

seasonal cycle is significantly asymmetrical. Thus for our
comparisons, the abscissa of the diamonds in Figure 5
corresponds to one of the extremums of our measurements.
Our monthly average curve (solid curve) is within the spread
of the individual measurements reported by Wallace and
Livingston [19901.

The retrieved average CO concentration in the botwin and

top layers are plotted in Figure 6. Triangles represent the

result obtained from a single spectrum and solid curves are
drawn through the monthly averages. The seasonal cycles of
both components of the CO vertical distribution have the
same phase as the one for the total column with a maximum
in the spring and a minimum in the late summer to early fall.
However, the spread of the measurements is significandy
larger than that obtained for the total column, Thus the

precision (based again on the interday spread) of the re-
trieval in the bottom layer is 3% and 6% in the top layer. This
result is consistent wi.th the results of the numerical experi-
ments with the different types of CO profiles described in the

prev!ous section.
The comparable results of in situ measurements and

photochemical modeling of the CO concentration are also
plotted in Figure 6. The measurements from an aircraft
(diamonds with bars) near Kitt Peak [Boatman et al., 1989]
have been obtained during several flights at heights of 2.3 to
2.6 km along the 91.5°W meridian between 29°H and 41°N
latitude during four _easons. Monthly averages for 2 years
(1989 and 1990) of the CO surface concentration measure-
ment at Niwot Ridge (40_, 105°W, 3.1 km above sea level)
are plotted as circles [NovelU et al., 1992]. Dotted and
dashed-dotted curves present the photochemical modeling of

the average concentration in the bottom and top layers (l. A.
Logan, personal communication, 1994). There is agreement
among an the data for the bottom layer, but for the top layer
there are significant discrepancies between our measure-
ments arid the modeling results. Unfortunately, there are no
other measurement data suitable for comparison. Based on
the agreement among the total column data and among
measuremetits and model calculations of the average con-
centration in the bottom layer, we infer that the model
overestimates the average CO concentration above the 400-
mbar (7 kin) level. From our measurements the average ratio
of the CO concentration in the bottom layer to the average
concentration in the top layer is 2.2 +- 0.1 (the averaging has
been done over all ratios of individual retrievals). The v',due

of this ratio for the profile in Figure 2 is 1.6 and for the
profiles in Figure 4 it varies from 1.2 to 2.3.

4. Conclusions

A method to retrieve two elements of the CO vertical

distribution from ground-based high-resolution infrared solar
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The CO ayerage concejntration in the bottom
(surface 400 mbar) and top (400 mbar to the top of the
atmosphere) layers. Open and solid triangles are average
concentrations in the top and bottom layers, respectively,
retrieved from an individual spectrum; solid curves are
monthly averages; circles are monthly averages at Niwot
Ridge [Novelli et al., 1992]; diamonds with bars are aircraft
measurement [Boatman et al., 1989]; dotted and dashed-
dotted curves model calculations for the bottom and top
layers, respectively (J. A. Logan, private communication,
1994).

spectra has been developed and tested. The CO total column
content and the average concentrations in two atmospheric
layers, the surface to 400 mbar and 400 mbar to the top of the
atmosphere are retrieved.

Solar spectra recorded at Kitt Peak from 1982 to 1993 have
been analyzed. The measured seasonal cycle, which is
significantly asymmetrical, is consistent with previously
reported infrared total column and published in situ mea-
surements. However, the average concentration retrieved

for the top of the two layers is lower than model calculations
by about factor of 2.

The method could be useful for additional atmospheric CO
and other trace gas studies, but further validations and
intercomparisous are required.

Acknowledgnentt. We are indebted to the National Solar Ob-
servatory which is operated by Association of Universities for
Research in Astronomy, Incorporated (AURA), under a cooperative
agreement with NSF. The McMath Frs solar observations were
partially supported by U.S. Department of Energy CO2 program,
NASA, the Chemical Manufacturers Association, and NSF. We
wish to thank Jennifer Logan of Harvard University for making
available her model calculations of CO vertical profiles.

References

Adrian, G. P., T. V. Clarmann, H. Fischer, and H. Oelhaf, Trace
gas measurements with the ground-based MIPAS instrument
during the arctic winters 1990 to 1992, IRS '92, in Current
ProbleAcs in Atmospheric Radiation, edited by S. Keevallik and
O. Klxner, pp. 359--362, A. Dcepak, Hampton, Va., 1992.

Backus, G. E., and J. F. Gilbert, Uniqueness in the inversion of
inaccurate gross Earth data, Philos. Trans. R. Soc. London A,
266, 123--192, 1970.

Boatman, J. F., D. L. WeIiman, C. C. Van Valin, R. L. Gunter,



1416 POUGATCHEV AND RINSLAND: CO VERTICAL DISTRIBUTION

J. D. Ray, H. Sievering, Y, Kim, S. W. Wilkinson, and M. Luria,
Airborne sampling of selected trace chemica/s above the central
United States, J. Geophys. Res., 94, 5081-5093, 1989.

Chackerian, C. Jr., G. Guelachvili, and R. H. Tipping_ CO 0-1 band

isotopic lines as inten_!y standards, J. Quant. Spectrosc. Radlat.
Transfer, 30, 107-112, 1983.

Dianov-Klokov, V. I., L. N. Yurganov, E. I. Grechko, and A. V.
Dzhola, Spectroscopic measurements of atmospheric carbon
monoxide and methane, 1, Latitudinal distribution) J. Atmos.
Chem., 8, 139--151, 1989.

Farmer, C. B., and R. H. Norton, A high-resoiution atlas of the

infrared spectrum of the sun and the earth atmosphere from
space, NASA Ref. Publ. 1224, vol. 1,532 pp., Washington, D. C.,
1989.

Farrenq, R., G. Guelachvili, A. J. Sauval, N. Grevesse, and C. B.
Farmer, Improved Dunham Coefficients for CO from infrared
solar fines of high rotational excitation, J. MoL Spectrosc., 149,
375-390, 1991.

Gallery, W. O., F. X. Kneizys, and S. A. Clough, Air mass
computer program for atmospheric transmittance/radiance calcu-
lation: FSCATM, Environ. Res. Pap. 828 (AFGL-TR-83-O065),
145 pp., Air Force Geophys. Lab., Bedford, Mass., 1983.

Goldman, A., and R. D. BIatherwick, Analysis of high resolution
solai" spectra in the 2.5 to 15 tan region, final report under Grant
ATM76-89908, Dep. of Phys., Univ. of Denver, Colo., 1980.

Golitsyn, G. S., E. I. Grechko, N. F. Elansky, and N. S. Pugachev,
Some Soviet measurements of trace gases, Tellus, 43(AB), 164-

175, 1991.
Hoell, J. M., C. N. Harward, and B. S. Williams, Remote hetero-

dyne radiometer measurements of atmospheric ammonia profiles,
Geophys. Res. Lett., 7, 313-316, 1980.

Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy,
Tropospheric chemistry: A global perspective,/. Geophys. Res.,
86, 7210-7254, 1981.

Marehr, P., A. Barbe, C. Secroun, J. tort, and P. Jouve, Ground-
based spectroscopic m_asurements of HCI, Geophys. Res. Left.,
7, 869-872; 1980.

Nakazawa, T., and M. Tanaka, Measurements of intensities and
self- and foreign-gas-broadened halfwidths of spectral lines in the
CO fundamental band, J. Quant. Spectrosc. Radiat. Transfer, 28,
409--416, 1982.

Novelli, P. C., L. P. Steele, and P. P. Tans, Mixing ratios of carbon
monoxide in the troposphere, /. Geophys. Res., 97, 20,731-
:20,750, 1992.

Novelli, P. C., K. A. Masaxie, P. P. Tans, and P. M. _amg, Recent

changes in atmospheric carbon monoxide, Science, 263, 1587-
1590, 1994.

Pngachev, N. S., Spectroscopic measurements of total content of an

atmospheric gas with unknown vertical distribution, Izv. Russ.
Acad. ScL Atmos. Oceanlc Phys., Engl. Trans., 24, 41-45, 1988.

Reichle, H. G., Jr., V. S. Connors, J. A. Holland, R. T. Sherrill,
H. A. Wallio, J. C. Casas, E. P. Condon, B. B. Gormsen, and W.
Seller, The distribution of middle tropospheric carbon monoxide
during early October 1984, J. Geophys. Res., 95, 9845-9856, 1990.

Rinsland, C. P., and J. S. Levine, Free tropospheric carbon mon-
oxide concentrations in 1950 and 195i deduced from infrared total
column amount measurements, Nature, 318, 250-254, 1985.

Rinsland, C. P., A. Goldman, F. J. Murcray, M. A. H. Smith, R. K.
Seals Jr., J. C. Larsen, and P. L. Rinsland, Stratospheric N20
mixing ratio profile from high-resolution balloon-borne solar ab-
sorption spectra and laboratory spectra near 1880 em -I , Appl.
Opt., 21, 4351--4355, 1982a.

Rinsland, C. P., M. A. H. Smith, P. L. Rinsland, A. Goldman, 3".W.
Brault, and G. M. Stokes, Ground-based infrared spectroscoi_ie
measurements of atmospheric hydrogen cyanide, J. Geophys.
Res., 87, 11,119-11,125, 1982b.

Rinsland, C. P., R. E. Boughner, J. C. Larsen, G. M. Stokes, and
J. W. Brault, Diurnal variations of atmospheric nitric oxide:
Ground-based infrared measurements and their interpretation

with time dependent photochemical model calculation, J. Geo-
phys. Res., 89, 9613-9622, 1984.

Rinsland, C. P., M. R. Gunson, R. Zander, and M. Lopez-Puertas,
Middle and upper atmosphere pressure-temperature profiles and
the abundances of CO 2 and CO in the upper atmosphere from
ATMOS/Spacelab 3 observations, J. Geophys. Res., 97, 20,479-
20,495, 1992.

Rodgers, C. D., Retrieval of the atmospheric temperature and
composition from remote measurements of thermal radiation,
Rev. Geophys., 14, 609--624, 1976.

Rodgers, C. D., Characterization and error analysis of profiles
retrieved from remote sounding measurements, J. Geophys. Res.,

95, 5587-5595, 1990.
Rothman, L. S., et al., The HITRAN molecular database: Editions

of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer, 48,
469-507, 1992.

Seller, W., and J. Fishman, The distribution of carbon monoxide
and ozone in the free troposphere, J. Geophys. Res., 86, 7255-

7265, 1981.
Shaw, J. H., The abundance of atmospheric carbon monoxide above

Columbus, Ohio, Astrophys. J., 128, 428--440, 1958.
Smith, M. A. H., Compilation of atmospheric gas concentration

profiles from 0 to 50 kin, NASA Tech. Memo. 83289, 1982.
Wallace, L., and W. Livingston, Spectroscopic observations of

atmospheric trace gases over Kitt Peak, 2, Nitrous oxide and
carbon monoxide from 1979 to 1985, J. Geophys. Res., 95,

16,383-16,390, 1990.
Zander, R., and C. P. Rinsland, Variability and trend study of

atmospheric constituents based on infrared solar spectra recorded
from the ground, in Proceedings of ASA Workshop I990, pp.
134-144, Institute of Atmospheric Optics, Tomsk, Russia, 1990.

Zander, R., P. Demoulin, D. H. Ehhalt, U. Schmidt, and C. P.
Rinsland, Secular increase of the total vertical column abundance
of carbon monoxide above central Europe since 1950, J. Geophys.
Res., 94, I 1,021-11,028, 1989.

N. S. Pougatchev, Christopher Newport University, Newport
News, VA 23606.

C. P. Rinsland, NASA Langley Research Center, Mail Stop 401A,

Hampton, VA 23681-001.

(Received May 13, 1994; revised September 2, 1994;
accepted September 9, 1994.)


